
1 

Middle East Technical University 

    

Department of Computer Engineering 

  

 

  

Music Mentor 

Software Test Document 

MemoryLeak 

Bahtiyar Onur Geyik, 1745975 

Emre Ercan, 1745918 

Gökçe Aksu, 1745694 

Ege Bozkurt, 1745819 

 

 

 



2 

Preface 

 

This document contains the test specifications, test types and test cases for Music Mentor 

project. The document is prepared according to the “IEEE Standard for Software 

and System Test Documentation - IEEE STD 829-2008” 

 

This test plan provides a complete description of all the test cases of Music Mentor. The first 

section of this document includes scope, level in overall sequence, test classes and overall test 

conditions and references subsections. 

 

The second section contains details for system test of Music Mentor and there are features to 

be tested and features not to be tested, test items and their identifiers, test traceability matrix, 

approach, feature pass/fail criteria and test deliverables subsections in this section.  

 

The third section is test management section. It includes planned activities and tasks; test 

progression, and environment/infrastructure. 

 

Fourth section of this document includes system test cases in terms of test case name, 

objective, inputs and expected outputs. 

 

Finally fifth section of the document contains system test report details in which we have test 

results, rationale for decisions, and a conclusion. 

 

 

 

 

 

 



3 

Table of Contents 

1. Introduction .......................................................................................................................... 4 

1.1 Document Identifier .......................................................................................................... 4 

1.2 Scope ............................................................................................................................... 4 

1.3 References ....................................................................................................................... 4 

1.4. Level in the Overall Sequence ......................................................................................... 4 

2. Details for System Test Plan ............................................................................................... 5 

2.1 Features to be Tested....................................................................................................... 5 

2.2 Features not to be Tested ................................................................................................. 5 

2.3 Approach .......................................................................................................................... 6 

2.4 Item Pass/Fail Criteria ...................................................................................................... 6 

2.5 Test Deliverables .............................................................................................................. 6 

3. Test Management ................................................................................................................. 7 

3.1 Planned Activities and Tasks; Test Progression ............................................................... 7 

3.2 Environment/Infrastructure ............................................................................................... 7 

4. Test Case Details ................................................................................................................. 8 

4.1 Introduction ....................................................................................................................... 8 

4.2 Cross Platform Testing ..................................................................................................... 8 

4.3 Constraint Testing ...........................................................................................................10 

4.4 Performance Testing .......................................................................................................11 

4.5 Scenario Testing ..............................................................................................................13 

5. System Test Report Details ................................................................................................16 

5.1. Overview of Test Results ................................................................................................16 

5.2. Detailed Test Results......................................................................................................17 

5.3. Rationale for Decisions ...................................................................................................18 

5.4. Conclusions and Recommendations ...............................................................................18 

 

 

 

 

 

 



4 

1. Introduction 

1.1 Document Identifier 

 

This document is prepared by MemoryLeak team on May 25, 2014. This is the Version 1.0 of 

Software Testing Documentation. 

 

1.2 Scope 

 

This project is a music recommendation system that suggests new music to the user based on 

his/her previous music preferences. Using this application each user may discover new music 

based on the music one previously listened to. The project may be used for military purposes. 

 

The purpose of the document is to explain the system testing of Music Mentor.  

The document contains purposes, features and expected outputs of the tests which are  

run on the system. This document may be used by stakeholders. Stakeholders may use this 

document to see which parts of the project are ready to use and error-free. 

 

1.3 References 

 

[1] IEEE STD 829-2008, IEEE Standard for Software and System Test Documentation 

[2] SDD of Music Mentor, Music Recommender System Software Design Description v1.1 

 

1.4. Level in the Overall Sequence 

 

1) Integration testing: The next level of testing is often called integration testing. In this level, 

modules in Music Mentor are combined together into different subsystems, which are then 

tested. The goal here is to see if the modules can be integrated properly. Hence, the emphasis 



5 

is on testing interfaces between modules. This testing activity can be considered testing the 

design. 

 

2) System testing: Here the entire software system is tested. The reference document for this 

process is the requirements document, and the goal is to see if the software meets its 

requirements. This is essentially a validation exercise. 

 

3) Acceptance testing: Acceptance Tests are the tests will be performed by the stakeholders to 

validate the system to see if the system meet their needs or not. Acceptance Tests will be 

performed after the system test and performance tests. 

 

In this document we have only done system testing as single level testing was the only required 

testing process for this project. 

 

2. Details for System Test Plan 

 

2.1 Features to be Tested 

 

Firstly in Music Mentor the functional properties are to be tested. While testing functional 

properties we use specific parameters and inputs in order to see the software’s behavior and 

see the related errors. After the test of functional properties the non-functional features are to 

be tested. The non-functional features include properties like performance, reliability and 

storage requirements. 

 

2.2 Features not to be Tested 

 

During testing process, some efficiency properties are not to be tested. Since the log data 

cannot be increased dramatically, efficiency will not be tested. 



6 

2.3 Approach 

 

The approaches used in testing of Music Mentor are black box method and analysis method. 

 

2.4 Item Pass/Fail Criteria 

 

In this testing report we may consider faults in two categories; deficiency and defect. 

Deficiencies are faults that do not block the software from its functionality. Defects are faults 

that stop or break down the software from running and they do not meet the requirements. 

 

The result is evaluated in three criteria which are pass, conditional pass and fail. Pass means the 

test case is run and no defects or deficiencies are observed. Conditional pass means when the 

test case is applied there is at least one deficiency observed but there are no defects. Fail 

means the test procedure includes a defect so it does not meet requirements. 

 

After the tests are run, the failed ones and conditionally passed ones will be analyzed and 

required changes will be done accordingly. After the changes are done then we will evaluate 

the situation and select a case in terms of regression. There may be no regression which means 

there is no need for regression testing because nothing on the general program structure is 

affected by the change. There may be regression which means the segment of the code where 

the change is made should be evaluated and some test cases may be run again. Lastly there 

may be full regression which means the changes affected general program structure so all 

changes should run again. 

 

2.5 Test Deliverables 

 

In Music Mentor, there will have two different deliverables. The first one is STD (Software Test 

Description). STD also consists of system level test procedures/cases which are given in Section 



7 

4 of this document. The last deliverable for testing activities will be Test Report which will be 

prepared according to IEEE STD 829-2008. In test report, the results of the designed testing 

activities will be summarized and will provide evaluations based on these results. 

 

3. Test Management 

 

3.1 Planned Activities and Tasks; Test Progression 

 

The test process will start with analysis. The studies will be done about all the classes in our 

software: Recommender class and other private classes. Then there will be some computational 

studies about the subject like similarity algorithms and neighborhood algorithms. After analysis 

phase the inspection will start. Reading SSD of the project in order to understand the 

requirements and design test cases accordingly. Then the code will be read in order to 

understand it and find the error prone parts of the code in testing purposes. In the next step we 

will choose necessary test cases. For better understanding then we will divide the test cases 

into groups according to their objectives. Then the expected outputs for each test case will be 

decided and descripted. Finally the inputs/parameters for the test cases will be decided. The 

inputs/parameters will be decided according to what we expect to test in that test case.  

 

In the final step the results of each test will be gathered in a test results table. This will enable 

us to see what should be done in further steps of the software’s development. The testing of 

this project will be done manually, not by test automation tools. 

 

3.2 Environment/Infrastructure 

 

Test process has following hardware and software needs: 

 



8 

Hardware Needs: A java-supported operating system installed computer and peripheral 

devices. 

Software Needs: Java Virtual Machine (JVM), Java Runtime Environment (JRE), Java  

Development Kit (JDK). 

 

4. Test Case Details 

4.1 Introduction 

 

This section embodies the detailed explanation for each test case accompanied by the inputs, 

outcomes, environmental and procedural requirements along with the dependencies among 

test cases. Environmental requirements require that in order to apply all test cases, whole 

system must be implemented and Java Environment must be installed to computer. 

 

This section includes the information for all test cases we run on the project. For each test case 

there are 4 fields; test case id, test case description, inputs/parameters, expected output. Test 

case id is unique for each test case and is used for identifying test cases.  

 

Test case description explains why the test is run on the project. Inputs are what inputs are to 

be given to the program in order to run that test and parameters are changes in source code in 

order to see the behavior of the program. Expected output is what we desire to see after the 

test is applied. There are no specific environmental needs, special procedural requirements and 

inter-case dependencies. However, to apply all test cases, Java Environment must be installed 

to the computer. 

 

4.2 Cross Platform Testing 

 

This test allows us to see if the project runs on different operating systems. 

 



9 

Test Case Id Test Case 

Description 

 

Tools Expected Output 

CP_LINUX Checks if the 

application works 

properly on Linux 

based operating  

system driven  

computers. 

 

UBUNTU operating 

system installed 

computer. 

 

Application works 

properly on JVM. 

 

CP_MAC Checks if the 

application works 

properly on Mac OS 

based operating 

system driven 

computers. 

 

Mac OS installed 

computer. 

 

Application works 

properly on JVM. 

 

CP_WINDOWS Checks if the 

application works 

properly on Windows 

based operating 

system driven 

computers. 

 

Windows operating 

system installed 

computer. 

 

Application works 

properly on JVM. 

 

 

 

 



10 

 

 

 

4.3 Constraint Testing 

 

This testing is done in order to see whether the program runs within the given boundaries. 

 

 

Test Case Id Test Case 

 

Description 

Parameters Expected Output 

CT_LSTNSNG_5 Checks if the system 

recommends songs 

to a user who 

listened to a given 

number of songs in 

the parameter.  

A user which listened 

to 5 songs. 

System recommends 

as expected 

CT_LSTSNG_20 Checks if the system 

recommends songs 

to a user who 

listened to a given 

number of songs in 

the parameter.  

A user which listened 

to 20 songs. 

System recommends 

as expected 

CT_LSTSNG_100 Checks if the system 

recommends songs 

to a user who 

A user which listened 

to 100 songs. 

System recommends 

as expected 



11 

listened to a given 

number of songs in 

the parameter.  

CT_LSTSNG_250 Checks if the system 

recommends songs 

to a user who 

listened to a given 

number of songs in 

the parameter.  

A user which listened 

to 250 songs. 

System recommends 

as expected 

CT_LSTSNG_500 Checks if the system 

recommends songs 

to a user who 

listened to a given 

number of songs in 

the parameter.  

A user which listened 

to 500 songs. 

System recommends 

as expected 

CT_LSTSNG_1000 Checks if the system 

recommends songs 

to a user who 

listened to a given 

number of songs in 

the parameter.  

A user which listened 

to 1000 songs. 

System recommends 

as expected 

 

 

4.4 Performance Testing 

 

This test is done in order to see if the program can run on extreme situations. 

 



12 

 

Test Case Id  Test Case 

 

Description 

 

Parameters Expected Output 

PT_LOGSIZE_1M Checks if the system 

recommends songs 

to a user within 

feasible time with a 

log file size of given 

number of logs.  

A generated log file 

with approximately 1 

million logs. 

System recommends 

as expected in a 

feasible time. 

PT_LOGSIZE_5M Checks if the system 

recommends songs 

to a user within 

feasible time with a 

log file size of given 

number of logs.  

A generated log file 

with approximately 5 

million logs. 

System recommends 

as expected in a 

feasible time. 

PT_LOGSIZE_15M Checks if the system 

recommends songs 

to a user within 

feasible time with a 

log file size of given 

number of logs.  

A generated log file 

with approximately 

15 million logs. 

System recommends 

as expected in a 

feasible time. 

PT_LOGSIZE_30M Checks if the system 

recommends songs 

to a user within 

A generated log file 

with approximately 

30 million logs. 

System recommends 

as expected in a 

feasible time. 



13 

feasible time with a 

log file size of given 

number of logs.  

PT_LOGSIZE_47M Checks if the system 

recommends songs 

to a user within 

feasible time with a 

log file size of given 

number of logs.  

A generated log file 

with approximately 

47 million logs. 

System recommends 

as expected in a 

feasible time. 

PT_GEN_LOGS1 Checks if the system 

can generate a log 

file properly with 

given number of 

parameters. 

Dataset with 144,292 

different users and 

109,147 different 

songs. 

System generates log 

files without causing 

any error. 

PT_GEN_LOGS2 Checks if the system 

can generate a log 

file properly with 

given number of 

parameters. 

Dataset with 408,489 

different users and 

257,964 different 

songs. 

System generates log 

files without causing 

any error. 

 

 

 

4.5 Scenario Testing 

 

The general purpose of this type of testing is to see correctness of software with different 

scenarios. 

 



14 

 

 

Test Case Id  Test Case Description Parameters 

 

Expected Output 

SC_RCM_FNC The behavior of the 

software is checked 

when a wrong userId 

is given to public 

List<Long> 

recommend(Long 

userId) 

userId Software throws an 

exception: User does 

not exist 

SC_RCM_FNC2 The behavior of the 

software is checked 

when a wrong userId 

is given to 

public List<Long> 

recommend(Long 

userId, Long songId) 

userId Software throws an 

exception: User does 

not exist 

SC_LIST_FNC_SNG The behavior of the 

software is checked 

when a wrong songId 

is given to public 

List<Long> 

recommend(Long 

userId, Long songId) 

songId Software throws an 

exception: Song does 

not exist 

SC_TRN_FP The behavior of the folderPath  Software throws an 



15 

software is checked 

when a wrong 

folderPath is given to 

public void 

train(String 

folderPath, String 

workspacePath) 

appropriate 

exception 

SC_TRN_INVLD The behavior of the 

software is checked 

when the folder in 

the given folderPath 

to the function public 

void train(String 

folderPath, String 

workspacePath) 

contains any 

documents other 

than user logs, 

directories which 

contain the user logs 

and rating.csv,  

folderPath  Software throws an 

appropriate 

exception 

SC_TRN_WP The behavior of the 

software is checked 

when the given 

workspacePath to the 

function 

public void 

workspacePath Software throws an 

appropriate 

exception and does 

not create a folder 



16 

train(String 

folderPath, String 

workspacePath) is 

not valid  

 

SC_LWS The behavior of the 

software is checked 

when the given 

workspacePath to the 

function public void 

loadWorkspace(Strin

g workspacePath) is 

not valid. 

workspacePath Software throws an 

appropriate 

exception  

 

 

5. System Test Report Details 

 

5.1. Overview of Test Results 

 

The testing procedure of Music Mentor included cross-platform testing, constraint testing, 

performance testing and scenario testing. The documentation contains detailed explanation of 

all test cases that are run on the software. The test cases are tested by trying the inputs in 

different situations and changing the parameters in the code. 

 



17 

 

 

5.2. Detailed Test Results 

 

No Test Case Id Result 

1 CP_LINUX PASS 

2 CP_MAC PASS 

3 CP_WINDOWS PASS 

4 CT_LSTSNG_5 PASS 

5 CT_LSTSNG_20 PASS 

6 CT_LSTSNG_100 PASS 

7 CT_LSTSNG_250 PASS 

8 CT_LSTSNG_500 PASS 

9 CT_LSTSNG_1000 PASS 

10 PT_LOGSIZE_1M PASS 

11 PT_LOGSIZE_5M PASS 

12 PT_LOGSIZE_15M PASS 

13 PT_LOGSIZE_30M PASS 

14 PT_LOGSIZE_47M PASS 

15 PT_GEN_LOGS1 PASS 

16 PT_GEN_LOGS2 PASS 

17 SC_RCM_FNC PASS 

18 SC_RCM_FNC2 PASS 

19 SC_LIST_FNC_SNG PASS 

20 SC_TRN_FP PASS 

21 SC_TRN_INVLD PASS 

22 SC_TRN_WP PASS 

23 SC_LWS PASS 

 



18 

5.3. Rationale for Decisions 

 

We have chosen the test cases to see the behavior of the code in error prone parameters and 

inputs. The test cases were tested number of times and the behaviors are observed using our 

evaluator.  

 

5.4. Conclusions and Recommendations 

 

In our testing process we have tested 23 test cases. The cases included performance testing, 

cross-platform testing, constraint testing and scenario testing.  


